新增导入数据支持单行列头的功能
This commit is contained in:
@@ -149,7 +149,7 @@ def get_data_from_csv_feature(data_path,skip_rows = 100,sample_rows = 100,normal
|
||||
get_data_from_csv_feature("D://test.excel",0,8,10,18)
|
||||
"""
|
||||
# 读取前xx行数据
|
||||
df = pd.read_csv(data_path,encoding='gbk')
|
||||
df = pd.read_csv(data_path,encoding='gbk',header=None)
|
||||
df = df.dropna(axis=1,how='all') # 删除包含任何空值的列
|
||||
df = df.dropna(axis=0,how='all') # 删除包含任何空值的行
|
||||
print(df.iloc[0,0])
|
||||
@@ -172,9 +172,14 @@ def get_data_from_csv_feature(data_path,skip_rows = 100,sample_rows = 100,normal
|
||||
else:
|
||||
#获取列数
|
||||
label_name = df.iloc[0]
|
||||
# 读取全量数据
|
||||
source_data = torch.tensor(df.iloc[1:sample_rows, ].to_numpy(), dtype=torch.float32)
|
||||
data_ori = torch.tensor(df.iloc[1:, ].to_numpy(), dtype=torch.float32)
|
||||
# 重新读取全量数据读取全量数据
|
||||
df = pd.read_csv(data_path, encoding='gbk')
|
||||
data = df.iloc[0:sample_rows]
|
||||
df = df.dropna(axis=1, how='all') # 删除包含任何空值的列
|
||||
df = df.dropna(axis=0, how='all') # 删除包含任何空值的行
|
||||
print(data.dtypes)
|
||||
source_data = torch.tensor(df.iloc[0:sample_rows, ].to_numpy(), dtype=torch.float32)
|
||||
data_ori = torch.tensor(df.iloc[0:, ].to_numpy(), dtype=torch.float32)
|
||||
normalizer = Normalizer(method=normalization_type)
|
||||
# 初始化归一化器
|
||||
normalizer.fit(data_ori)
|
||||
@@ -200,7 +205,7 @@ def get_train_data_from_csv(data_path,normalization = True,normalization_type =
|
||||
:param normalization:
|
||||
"""
|
||||
# 读取前xx行数据
|
||||
df = pd.read_csv(data_path,encoding='gbk')
|
||||
df = pd.read_csv(data_path,encoding='gbk',header=None)
|
||||
df = df.dropna(axis=1,how='all') # 删除包含任何空值的列
|
||||
df = df.dropna(axis=0,how='all') # 删除包含任何空值的行
|
||||
# 尝试将值转换为数字
|
||||
@@ -220,8 +225,11 @@ def get_train_data_from_csv(data_path,normalization = True,normalization_type =
|
||||
data_normal = normalizer.transform(data_ori)
|
||||
return data_normal,normalizer
|
||||
else:
|
||||
df = pd.read_csv(data_path, encoding='gbk')
|
||||
df = df.dropna(axis=1, how='all') # 删除包含任何空值的列
|
||||
df = df.dropna(axis=0, how='all') # 删除包含任何空值的行
|
||||
# 读取全量数据
|
||||
data_ori = torch.tensor(df.iloc[1:, ].to_numpy(), dtype=torch.float32)
|
||||
data_ori = torch.tensor(df.iloc[:, ].to_numpy(), dtype=torch.float32)
|
||||
if not normalization:
|
||||
return data_ori
|
||||
normalizer = Normalizer(method=normalization_type)
|
||||
|
||||
Reference in New Issue
Block a user