From 09b4f07c27c05b43eef008f4da2fea36c5523234 Mon Sep 17 00:00:00 2001 From: liyong Date: Tue, 21 Oct 2025 20:52:26 +0800 Subject: [PATCH] =?UTF-8?q?=E4=BF=AE=E5=A4=8D=E9=A2=84=E6=B5=8B=E8=84=9A?= =?UTF-8?q?=E6=9C=AC=E5=92=8C=E8=AE=AD=E7=BB=83=E8=84=9A=E6=9C=AC=E7=9A=84?= =?UTF-8?q?=E6=89=A7=E8=A1=8Cbug?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .idea/encodings.xml | 6 + .../Data_Handle/forecast.json | 1 + .../FC_ML_Baseline_Test/Data_Handle/model.bin | Bin 0 -> 1804 bytes .../FC_ML_Baseline_Test/Data_Handle/model.pth | Bin 0 -> 3929 bytes .../Data_Handle/training.log | 272 ++++++++++++++++++ 5 files changed, 279 insertions(+) create mode 100644 .idea/encodings.xml create mode 100644 FC_ML_Baseline/FC_ML_Baseline_Test/Data_Handle/forecast.json create mode 100644 FC_ML_Baseline/FC_ML_Baseline_Test/Data_Handle/model.bin create mode 100644 FC_ML_Baseline/FC_ML_Baseline_Test/Data_Handle/model.pth create mode 100644 FC_ML_Baseline/FC_ML_Baseline_Test/Data_Handle/training.log diff --git a/.idea/encodings.xml b/.idea/encodings.xml new file mode 100644 index 0000000..c96602a --- /dev/null +++ b/.idea/encodings.xml @@ -0,0 +1,6 @@ + + + + + + \ No newline at end of file diff --git a/FC_ML_Baseline/FC_ML_Baseline_Test/Data_Handle/forecast.json b/FC_ML_Baseline/FC_ML_Baseline_Test/Data_Handle/forecast.json new file mode 100644 index 0000000..9f64f01 --- /dev/null +++ b/FC_ML_Baseline/FC_ML_Baseline_Test/Data_Handle/forecast.json @@ -0,0 +1 @@ +{"label1": -33.618247985839844, "label2": 0.769456148147583, "label3": 13.0462007522583, "label4": 4.485231399536133, "label5": -30.332216262817383, "label6": -30.264156341552734, "label7": 2.244447708129883, "label8": -15.965958595275879} \ No newline at end of file diff --git a/FC_ML_Baseline/FC_ML_Baseline_Test/Data_Handle/model.bin b/FC_ML_Baseline/FC_ML_Baseline_Test/Data_Handle/model.bin new file mode 100644 index 0000000000000000000000000000000000000000..4719ad0dcb57d2468f56974b0422fceccd4cd56b GIT binary patch literal 1804 zcmWIWW@cev;NW1u0DKH047vF!sX6*7i6x181=%@nP67;3XrO^9IXOQkCpEbwGe57G z%fBckwJ0^kB{R8%tB^r6sE|=3f){9XPG(+eVv$~XYG!&yNg-2mNq$jshF*MWNoGzl zSA0=wQfX#RN_ErJST~f#sRLC2_jc`#? zW@2$6Uk1>+43-RtafXHb8SLI1C4~ZDV_FLZy%}2zg&;-#*4k=p7Iaz!@w247Si%NvbSK%?Aayo0BC*w4lWjZf;IyNl8vB$o^K_$C4oT zfiQ0Sc^Dj!QiZ;Oo0ARsmIIwt^&!yq$ld@Oi+QVUjAQ@p61Zz;J3B>kPg3GUYk}_v z_Vx#;*_t$d-?gU4-nP@I&89boe~+c|-d%qkKJR`PGRykJ9DCckEPk8ErwsN=wEWmR zt8KNd&?O``~H7Xw=KM3 zLd{;OnQC@bg}!#6nAx{qf29I2Re&(Qm{CKH8ACTGB_d*G&HO#q5{+kUpSU>MC6?OR z@oQPy_GOpYHhyH;qt?(1wme0p5%t$HGfa@MZ<`*nqk~>LF?Y@*~v5 literal 0 HcmV?d00001 diff --git a/FC_ML_Baseline/FC_ML_Baseline_Test/Data_Handle/model.pth b/FC_ML_Baseline/FC_ML_Baseline_Test/Data_Handle/model.pth new file mode 100644 index 0000000000000000000000000000000000000000..f3f25fe068fdedb8d73bd05b6363fb58e9e6ca34 GIT binary patch literal 3929 zcmbtX30P9u9>2JY`!ZUIdzp>}xZ%ddG@nZ-;g+Tu0iuuuB3NdYnM-QfWM*2KHnz?* zQ`3~?3-L|nQu5honK^2UGi3{vxm5PO(cZmc3Z}h!@9>@P-h1x({eS2FcgRFVB>+%U z13np=fDy2P8^>T{;-~^D2J7de4@7@5ES`1LQetB9#~zFECL@-j!6j+Jht11s7pPj` z{g%<{OoRrY<+gqgg*ycBTxlL&;`&H9FobnKdE$j|oLB7Gce#)tG%>=bE0lp=1#KeR zTW7%>t#v|DlL_JS)hD%{EqS$ttV#mk%^J+{tRVOw0YzT7juY0{YSq0s_ks}SR3Q4% z3J~=QJ46EUd_0yNBRo9x0Pm~30e_}$Z*Bbkz*-lD9iI7ZMeb|j`$g+Rc6gMk^F52rDRtRFNHEE780;C-At?T>>t(pVQiRILCS(m9 zttEcHRTT8gIEa({2u8noB|@9=Ye)6=*Y(AE6Rr~%io9>1!Dpg!MSI6`@d^e(1Ts-o ztvVuMI4e;YTMWvi*E4{_6?0E6^zv0XLb>q)^a)%PGM@6cULN z4Eqh5%w=zu-Xh`KiA5w2u*=+P8wER@AeqYIus8`kM1GVJ^h{y#De)<6Hibr|CvKu9 z$5EJEZX!>C6r}>aWwSU8YBEnzhHruw&EcRSKTTmX_-N@KWYEM`Bu{CA3I=atuo9R8 zo-$nup`-{{Y(A2b%%G*P*l`pAgTv=0Q#Lvxc`CNHQK}Gv5ACETFnFp`2-1(ur3%8N zi%6bY6l6;P%Tte1gs$|Y6dsZoAPC`U5CL1F8c|(fOH?N!1bK8im(6C-1uQOyk6f7? z$4F+x`LgH&Bu~>WR1nJ3ih`mKps}cYo;DMrW~wr!q8)fTOe9ea5~({O5)ufBV@gqa zOhi6Yfs{hy=|j^14Lez8dY?xQbSQYjMmB_k`qQX(08o=grb8yeOqmWNZ#vAh>Cj1= z{e0%l=?4)jTRHVu&AMSj!X8q&Mhuv=uh z$M}r3neU#1AKVvXt`415+f};N;>+z+% zTR%Qt-@4#(%ui3slDovwml=D2nvJjhEekHa9&|q!%jjQWZ~MpalM?cZVil$tIkCd@ zERkuv3D#m|Mai%jvPj@(wde_Ge!UjaagehmP$uF^ZAzbD!OE3cSfEj3_`#@BQ&yi^ zeqYt8d$<(Nv)_~hUwnVk+xFN67VB;!Z@BZ^hJ*1K%x28{v2E!BEuidQ{m(9142Wso z_Y2YwiuTexVnBOc%bl4+ZH0&1PMi$x3K)xh?$I4`zc*)Rs=lrHy>X4@&MsS))@Lp* zSC4-FR9AI*3-PeuOG_2_Intoj)T!yX3#zXd-xgciJJPoM=E6P3?S+lq zl#m>psb-ST3QNb(HyILCp|yWxQh>ca1%@4o|F(@VWlda}6J1J#a_1A2#y)9p#NriCN%{Y!^m`WXY;{|Nh~JajOml|qyze` znx=OHF9mjX=$Evtuu^(|dMLN&+5`Xaj23I_?;NhDDW@fl7=uSkecfSBPqH@nUhJ8iRo!G){o|IN>42?T5ge1;tGulaDR z0MEJ4fSO84=!v$N&q!ub*{n1wT;eILI6t4S%Rdfoj!v#PEY=a{;_T$?=8AK4a>qJ2 zVqI`pSFD>G4(sgh?tpc3gin}Yulv{*IvqU8LPWACKk+R*P zJTeLLI~k8a->UC z=bRQG8@^g{0t}HK1xzN4nNZoN(~*Pjn}SY7`%JKGK%nHnMj9V^XAe^{QAK6RB*IK_ t=@b@%O^lCMFSxyjM$O~`goFPa0PiOK9rAN16qVte0cb!!c)xV-e*iud+R*?2 literal 0 HcmV?d00001 diff --git a/FC_ML_Baseline/FC_ML_Baseline_Test/Data_Handle/training.log b/FC_ML_Baseline/FC_ML_Baseline_Test/Data_Handle/training.log new file mode 100644 index 0000000..4ce5177 --- /dev/null +++ b/FC_ML_Baseline/FC_ML_Baseline_Test/Data_Handle/training.log @@ -0,0 +1,272 @@ +Epoch 0 | Train Loss: 0.3691 | Test Loss: 0.3136 | 损失比: 1.18:1 +Epoch 11 | Train Loss: 0.1237 | Test Loss: 0.1378 | 损失比: 0.90:1 +Epoch 22 | Train Loss: 0.0933 | Test Loss: 0.1142 | 损失比: 0.82:1 +Epoch 33 | Train Loss: 0.0779 | Test Loss: 0.1037 | 损失比: 0.75:1 +Epoch 44 | Train Loss: 0.0714 | Test Loss: 0.1015 | 损失比: 0.70:1 +Epoch 55 | Train Loss: 0.0682 | Test Loss: 0.1017 | 损失比: 0.67:1 +Epoch 66 | Train Loss: 0.0665 | Test Loss: 0.1026 | 损失比: 0.65:1 +Epoch 77 | Train Loss: 0.0655 | Test Loss: 0.1043 | 损失比: 0.63:1 +Epoch 88 | Train Loss: 0.0648 | Test Loss: 0.1057 | 损失比: 0.61:1 +Epoch 99 | Train Loss: 0.0643 | Test Loss: 0.1074 | 损失比: 0.60:1 +Epoch 110 | Train Loss: 0.0639 | Test Loss: 0.1092 | 损失比: 0.59:1 +Epoch 121 | Train Loss: 0.0636 | Test Loss: 0.1106 | 损失比: 0.58:1 +Epoch 132 | Train Loss: 0.0633 | Test Loss: 0.1119 | 损失比: 0.57:1 +Epoch 143 | Train Loss: 0.0631 | Test Loss: 0.1129 | 损失比: 0.56:1 +Epoch 154 | Train Loss: 0.0630 | Test Loss: 0.1142 | 损失比: 0.55:1 +Epoch 165 | Train Loss: 0.0629 | Test Loss: 0.1151 | 损失比: 0.55:1 +Epoch 176 | Train Loss: 0.0628 | Test Loss: 0.1158 | 损失比: 0.54:1 +Epoch 187 | Train Loss: 0.0627 | Test Loss: 0.1163 | 损失比: 0.54:1 +Epoch 198 | Train Loss: 0.0626 | Test Loss: 0.1172 | 损失比: 0.53:1 +Epoch 209 | Train Loss: 0.0626 | Test Loss: 0.1177 | 损失比: 0.53:1 +Epoch 220 | Train Loss: 0.0625 | Test Loss: 0.1182 | 损失比: 0.53:1 +Epoch 231 | Train Loss: 0.0624 | Test Loss: 0.1185 | 损失比: 0.53:1 +Epoch 242 | Train Loss: 0.0624 | Test Loss: 0.1186 | 损失比: 0.53:1 +Epoch 253 | Train Loss: 0.0624 | Test Loss: 0.1193 | 损失比: 0.52:1 +Epoch 264 | Train Loss: 0.0623 | Test Loss: 0.1194 | 损失比: 0.52:1 +Epoch 275 | Train Loss: 0.0623 | Test Loss: 0.1197 | 损失比: 0.52:1 +Epoch 286 | Train Loss: 0.0623 | Test Loss: 0.1199 | 损失比: 0.52:1 +Epoch 297 | Train Loss: 0.0622 | Test Loss: 0.1203 | 损失比: 0.52:1 +Epoch 308 | Train Loss: 0.0622 | Test Loss: 0.1206 | 损失比: 0.52:1 +Epoch 319 | Train Loss: 0.0622 | Test Loss: 0.1206 | 损失比: 0.52:1 +Epoch 330 | Train Loss: 0.0622 | Test Loss: 0.1211 | 损失比: 0.51:1 +Epoch 341 | Train Loss: 0.0621 | Test Loss: 0.1212 | 损失比: 0.51:1 +Epoch 352 | Train Loss: 0.0621 | Test Loss: 0.1214 | 损失比: 0.51:1 +Epoch 363 | Train Loss: 0.0621 | Test Loss: 0.1216 | 损失比: 0.51:1 +Epoch 374 | Train Loss: 0.0621 | Test Loss: 0.1218 | 损失比: 0.51:1 +Epoch 385 | Train Loss: 0.0621 | Test Loss: 0.1220 | 损失比: 0.51:1 +Epoch 396 | Train Loss: 0.0620 | Test Loss: 0.1223 | 损失比: 0.51:1 +Epoch 407 | Train Loss: 0.0620 | Test Loss: 0.1225 | 损失比: 0.51:1 +Epoch 418 | Train Loss: 0.0620 | Test Loss: 0.1227 | 损失比: 0.51:1 +Epoch 429 | Train Loss: 0.0620 | Test Loss: 0.1230 | 损失比: 0.50:1 +Epoch 440 | Train Loss: 0.0620 | Test Loss: 0.1230 | 损失比: 0.50:1 +Epoch 451 | Train Loss: 0.0620 | Test Loss: 0.1232 | 损失比: 0.50:1 +Epoch 462 | Train Loss: 0.0619 | Test Loss: 0.1232 | 损失比: 0.50:1 +Epoch 473 | Train Loss: 0.0619 | Test Loss: 0.1238 | 损失比: 0.50:1 +Epoch 484 | Train Loss: 0.0619 | Test Loss: 0.1239 | 损失比: 0.50:1 +Epoch 495 | Train Loss: 0.0619 | Test Loss: 0.1243 | 损失比: 0.50:1 +Epoch 506 | Train Loss: 0.0619 | Test Loss: 0.1245 | 损失比: 0.50:1 +Epoch 517 | Train Loss: 0.0619 | Test Loss: 0.1251 | 损失比: 0.49:1 +Epoch 528 | Train Loss: 0.0619 | Test Loss: 0.1249 | 损失比: 0.50:1 +Epoch 539 | Train Loss: 0.0618 | Test Loss: 0.1248 | 损失比: 0.50:1 +Epoch 550 | Train Loss: 0.0618 | Test Loss: 0.1250 | 损失比: 0.49:1 +Epoch 561 | Train Loss: 0.0618 | Test Loss: 0.1254 | 损失比: 0.49:1 +Epoch 572 | Train Loss: 0.0618 | Test Loss: 0.1254 | 损失比: 0.49:1 +Epoch 583 | Train Loss: 0.0618 | Test Loss: 0.1257 | 损失比: 0.49:1 +Epoch 594 | Train Loss: 0.0618 | Test Loss: 0.1261 | 损失比: 0.49:1 +Epoch 605 | Train Loss: 0.0618 | Test Loss: 0.1261 | 损失比: 0.49:1 +Epoch 616 | Train Loss: 0.0618 | Test Loss: 0.1264 | 损失比: 0.49:1 +Epoch 627 | Train Loss: 0.0617 | Test Loss: 0.1264 | 损失比: 0.49:1 +Epoch 638 | Train Loss: 0.0617 | Test Loss: 0.1268 | 损失比: 0.49:1 +Epoch 649 | Train Loss: 0.0617 | Test Loss: 0.1269 | 损失比: 0.49:1 +Epoch 660 | Train Loss: 0.0617 | Test Loss: 0.1274 | 损失比: 0.48:1 +Epoch 671 | Train Loss: 0.0617 | Test Loss: 0.1273 | 损失比: 0.48:1 +Epoch 682 | Train Loss: 0.0617 | Test Loss: 0.1278 | 损失比: 0.48:1 +Epoch 693 | Train Loss: 0.0617 | Test Loss: 0.1279 | 损失比: 0.48:1 +Epoch 704 | Train Loss: 0.0617 | Test Loss: 0.1280 | 损失比: 0.48:1 +Epoch 715 | Train Loss: 0.0617 | Test Loss: 0.1282 | 损失比: 0.48:1 +Epoch 726 | Train Loss: 0.0616 | Test Loss: 0.1282 | 损失比: 0.48:1 +Epoch 737 | Train Loss: 0.0616 | Test Loss: 0.1286 | 损失比: 0.48:1 +Epoch 748 | Train Loss: 0.0616 | Test Loss: 0.1290 | 损失比: 0.48:1 +Epoch 759 | Train Loss: 0.0616 | Test Loss: 0.1291 | 损失比: 0.48:1 +Epoch 770 | Train Loss: 0.0616 | Test Loss: 0.1293 | 损失比: 0.48:1 +Epoch 781 | Train Loss: 0.0616 | Test Loss: 0.1298 | 损失比: 0.47:1 +Epoch 792 | Train Loss: 0.0616 | Test Loss: 0.1298 | 损失比: 0.47:1 +Epoch 803 | Train Loss: 0.0616 | Test Loss: 0.1298 | 损失比: 0.47:1 +Epoch 814 | Train Loss: 0.0616 | Test Loss: 0.1301 | 损失比: 0.47:1 +Epoch 825 | Train Loss: 0.0616 | Test Loss: 0.1302 | 损失比: 0.47:1 +Epoch 836 | Train Loss: 0.0616 | Test Loss: 0.1308 | 损失比: 0.47:1 +Epoch 847 | Train Loss: 0.0615 | Test Loss: 0.1308 | 损失比: 0.47:1 +Epoch 858 | Train Loss: 0.0615 | Test Loss: 0.1309 | 损失比: 0.47:1 +Epoch 869 | Train Loss: 0.0615 | Test Loss: 0.1311 | 损失比: 0.47:1 +Epoch 880 | Train Loss: 0.0615 | Test Loss: 0.1311 | 损失比: 0.47:1 +Epoch 891 | Train Loss: 0.0615 | Test Loss: 0.1317 | 损失比: 0.47:1 +Epoch 902 | Train Loss: 0.0615 | Test Loss: 0.1320 | 损失比: 0.47:1 +Epoch 913 | Train Loss: 0.0615 | Test Loss: 0.1318 | 损失比: 0.47:1 +Epoch 924 | Train Loss: 0.0615 | Test Loss: 0.1321 | 损失比: 0.47:1 +Epoch 935 | Train Loss: 0.0615 | Test Loss: 0.1322 | 损失比: 0.47:1 +Epoch 946 | Train Loss: 0.0615 | Test Loss: 0.1324 | 损失比: 0.46:1 +Epoch 957 | Train Loss: 0.0615 | Test Loss: 0.1329 | 损失比: 0.46:1 +Epoch 968 | Train Loss: 0.0615 | Test Loss: 0.1329 | 损失比: 0.46:1 +Epoch 979 | Train Loss: 0.0614 | Test Loss: 0.1331 | 损失比: 0.46:1 +Epoch 990 | Train Loss: 0.0614 | Test Loss: 0.1334 | 损失比: 0.46:1 +Epoch 0 | Train Loss: 0.3581 | Test Loss: 0.2541 | 损失比: 1.41:1 +Epoch 11 | Train Loss: 0.1363 | Test Loss: 0.1514 | 损失比: 0.90:1 +Epoch 22 | Train Loss: 0.1082 | Test Loss: 0.1258 | 损失比: 0.86:1 +Epoch 33 | Train Loss: 0.0906 | Test Loss: 0.1128 | 损失比: 0.80:1 +Epoch 44 | Train Loss: 0.0800 | Test Loss: 0.1113 | 损失比: 0.72:1 +Epoch 55 | Train Loss: 0.0733 | Test Loss: 0.1154 | 损失比: 0.64:1 +Epoch 66 | Train Loss: 0.0691 | Test Loss: 0.1190 | 损失比: 0.58:1 +Epoch 77 | Train Loss: 0.0663 | Test Loss: 0.1217 | 损失比: 0.54:1 +Epoch 88 | Train Loss: 0.0648 | Test Loss: 0.1244 | 损失比: 0.52:1 +Epoch 99 | Train Loss: 0.0640 | Test Loss: 0.1265 | 损失比: 0.51:1 +Epoch 110 | Train Loss: 0.0636 | Test Loss: 0.1284 | 损失比: 0.49:1 +Epoch 121 | Train Loss: 0.0633 | Test Loss: 0.1298 | 损失比: 0.49:1 +Epoch 132 | Train Loss: 0.0631 | Test Loss: 0.1306 | 损失比: 0.48:1 +Epoch 143 | Train Loss: 0.0630 | Test Loss: 0.1310 | 损失比: 0.48:1 +Epoch 154 | Train Loss: 0.0629 | Test Loss: 0.1315 | 损失比: 0.48:1 +Epoch 165 | Train Loss: 0.0628 | Test Loss: 0.1318 | 损失比: 0.48:1 +Epoch 176 | Train Loss: 0.0627 | Test Loss: 0.1322 | 损失比: 0.47:1 +Epoch 187 | Train Loss: 0.0626 | Test Loss: 0.1324 | 损失比: 0.47:1 +Epoch 198 | Train Loss: 0.0626 | Test Loss: 0.1329 | 损失比: 0.47:1 +Epoch 209 | Train Loss: 0.0625 | Test Loss: 0.1328 | 损失比: 0.47:1 +Epoch 220 | Train Loss: 0.0625 | Test Loss: 0.1331 | 损失比: 0.47:1 +Epoch 231 | Train Loss: 0.0624 | Test Loss: 0.1332 | 损失比: 0.47:1 +Epoch 242 | Train Loss: 0.0624 | Test Loss: 0.1333 | 损失比: 0.47:1 +Epoch 253 | Train Loss: 0.0623 | Test Loss: 0.1333 | 损失比: 0.47:1 +Epoch 264 | Train Loss: 0.0623 | Test Loss: 0.1335 | 损失比: 0.47:1 +Epoch 275 | Train Loss: 0.0623 | Test Loss: 0.1338 | 损失比: 0.47:1 +Epoch 286 | Train Loss: 0.0622 | Test Loss: 0.1338 | 损失比: 0.47:1 +Epoch 297 | Train Loss: 0.0622 | Test Loss: 0.1338 | 损失比: 0.46:1 +Epoch 308 | Train Loss: 0.0622 | Test Loss: 0.1340 | 损失比: 0.46:1 +Epoch 319 | Train Loss: 0.0621 | Test Loss: 0.1341 | 损失比: 0.46:1 +Epoch 330 | Train Loss: 0.0621 | Test Loss: 0.1344 | 损失比: 0.46:1 +Epoch 341 | Train Loss: 0.0621 | Test Loss: 0.1345 | 损失比: 0.46:1 +Epoch 352 | Train Loss: 0.0621 | Test Loss: 0.1345 | 损失比: 0.46:1 +Epoch 363 | Train Loss: 0.0620 | Test Loss: 0.1344 | 损失比: 0.46:1 +Epoch 374 | Train Loss: 0.0620 | Test Loss: 0.1346 | 损失比: 0.46:1 +Epoch 385 | Train Loss: 0.0620 | Test Loss: 0.1345 | 损失比: 0.46:1 +Epoch 396 | Train Loss: 0.0620 | Test Loss: 0.1347 | 损失比: 0.46:1 +Epoch 407 | Train Loss: 0.0619 | Test Loss: 0.1346 | 损失比: 0.46:1 +Epoch 418 | Train Loss: 0.0619 | Test Loss: 0.1347 | 损失比: 0.46:1 +Epoch 429 | Train Loss: 0.0619 | Test Loss: 0.1350 | 损失比: 0.46:1 +Epoch 440 | Train Loss: 0.0619 | Test Loss: 0.1345 | 损失比: 0.46:1 +Epoch 451 | Train Loss: 0.0619 | Test Loss: 0.1348 | 损失比: 0.46:1 +Epoch 462 | Train Loss: 0.0618 | Test Loss: 0.1349 | 损失比: 0.46:1 +Epoch 473 | Train Loss: 0.0618 | Test Loss: 0.1351 | 损失比: 0.46:1 +Epoch 484 | Train Loss: 0.0618 | Test Loss: 0.1351 | 损失比: 0.46:1 +Epoch 495 | Train Loss: 0.0618 | Test Loss: 0.1354 | 损失比: 0.46:1 +Epoch 506 | Train Loss: 0.0618 | Test Loss: 0.1353 | 损失比: 0.46:1 +Epoch 517 | Train Loss: 0.0618 | Test Loss: 0.1353 | 损失比: 0.46:1 +Epoch 528 | Train Loss: 0.0617 | Test Loss: 0.1356 | 损失比: 0.46:1 +Epoch 539 | Train Loss: 0.0617 | Test Loss: 0.1357 | 损失比: 0.45:1 +Epoch 550 | Train Loss: 0.0617 | Test Loss: 0.1356 | 损失比: 0.46:1 +Epoch 561 | Train Loss: 0.0617 | Test Loss: 0.1356 | 损失比: 0.45:1 +Epoch 572 | Train Loss: 0.0617 | Test Loss: 0.1358 | 损失比: 0.45:1 +Epoch 583 | Train Loss: 0.0617 | Test Loss: 0.1355 | 损失比: 0.45:1 +Epoch 594 | Train Loss: 0.0616 | Test Loss: 0.1358 | 损失比: 0.45:1 +Epoch 605 | Train Loss: 0.0616 | Test Loss: 0.1361 | 损失比: 0.45:1 +Epoch 616 | Train Loss: 0.0616 | Test Loss: 0.1363 | 损失比: 0.45:1 +Epoch 627 | Train Loss: 0.0616 | Test Loss: 0.1361 | 损失比: 0.45:1 +Epoch 638 | Train Loss: 0.0616 | Test Loss: 0.1366 | 损失比: 0.45:1 +Epoch 649 | Train Loss: 0.0616 | Test Loss: 0.1366 | 损失比: 0.45:1 +Epoch 660 | Train Loss: 0.0616 | Test Loss: 0.1365 | 损失比: 0.45:1 +Epoch 671 | Train Loss: 0.0615 | Test Loss: 0.1367 | 损失比: 0.45:1 +Epoch 682 | Train Loss: 0.0615 | Test Loss: 0.1367 | 损失比: 0.45:1 +Epoch 693 | Train Loss: 0.0615 | Test Loss: 0.1368 | 损失比: 0.45:1 +Epoch 704 | Train Loss: 0.0615 | Test Loss: 0.1372 | 损失比: 0.45:1 +Epoch 715 | Train Loss: 0.0615 | Test Loss: 0.1371 | 损失比: 0.45:1 +Epoch 726 | Train Loss: 0.0615 | Test Loss: 0.1371 | 损失比: 0.45:1 +Epoch 737 | Train Loss: 0.0615 | Test Loss: 0.1371 | 损失比: 0.45:1 +Epoch 748 | Train Loss: 0.0615 | Test Loss: 0.1372 | 损失比: 0.45:1 +Epoch 759 | Train Loss: 0.0615 | Test Loss: 0.1376 | 损失比: 0.45:1 +Epoch 770 | Train Loss: 0.0614 | Test Loss: 0.1373 | 损失比: 0.45:1 +Epoch 781 | Train Loss: 0.0614 | Test Loss: 0.1376 | 损失比: 0.45:1 +Epoch 792 | Train Loss: 0.0614 | Test Loss: 0.1377 | 损失比: 0.45:1 +Epoch 803 | Train Loss: 0.0614 | Test Loss: 0.1378 | 损失比: 0.45:1 +Epoch 814 | Train Loss: 0.0614 | Test Loss: 0.1378 | 损失比: 0.45:1 +Epoch 825 | Train Loss: 0.0614 | Test Loss: 0.1384 | 损失比: 0.44:1 +Epoch 836 | Train Loss: 0.0614 | Test Loss: 0.1383 | 损失比: 0.44:1 +Epoch 847 | Train Loss: 0.0614 | Test Loss: 0.1382 | 损失比: 0.44:1 +Epoch 858 | Train Loss: 0.0614 | Test Loss: 0.1384 | 损失比: 0.44:1 +Epoch 869 | Train Loss: 0.0614 | Test Loss: 0.1385 | 损失比: 0.44:1 +Epoch 880 | Train Loss: 0.0613 | Test Loss: 0.1385 | 损失比: 0.44:1 +Epoch 891 | Train Loss: 0.0613 | Test Loss: 0.1384 | 损失比: 0.44:1 +Epoch 902 | Train Loss: 0.0613 | Test Loss: 0.1389 | 损失比: 0.44:1 +Epoch 913 | Train Loss: 0.0613 | Test Loss: 0.1388 | 损失比: 0.44:1 +Epoch 924 | Train Loss: 0.0613 | Test Loss: 0.1391 | 损失比: 0.44:1 +Epoch 935 | Train Loss: 0.0613 | Test Loss: 0.1392 | 损失比: 0.44:1 +Epoch 946 | Train Loss: 0.0613 | Test Loss: 0.1393 | 损失比: 0.44:1 +Epoch 957 | Train Loss: 0.0613 | Test Loss: 0.1390 | 损失比: 0.44:1 +Epoch 968 | Train Loss: 0.0613 | Test Loss: 0.1391 | 损失比: 0.44:1 +Epoch 979 | Train Loss: 0.0613 | Test Loss: 0.1395 | 损失比: 0.44:1 +Epoch 990 | Train Loss: 0.0613 | Test Loss: 0.1396 | 损失比: 0.44:1 +Epoch 0 | Train Loss: 0.3120 | Test Loss: 0.2047 | 损失比: 1.52:1 +Epoch 10 | Train Loss: 0.1209 | Test Loss: 0.1715 | 损失比: 0.71:1 +Epoch 20 | Train Loss: 0.0993 | Test Loss: 0.1597 | 损失比: 0.62:1 +Epoch 30 | Train Loss: 0.0858 | Test Loss: 0.1510 | 损失比: 0.57:1 +Epoch 40 | Train Loss: 0.0773 | Test Loss: 0.1464 | 损失比: 0.53:1 +Epoch 50 | Train Loss: 0.0723 | Test Loss: 0.1442 | 损失比: 0.50:1 +Epoch 60 | Train Loss: 0.0691 | Test Loss: 0.1434 | 损失比: 0.48:1 +Epoch 70 | Train Loss: 0.0672 | Test Loss: 0.1422 | 损失比: 0.47:1 +Epoch 80 | Train Loss: 0.0658 | Test Loss: 0.1421 | 损失比: 0.46:1 +Epoch 90 | Train Loss: 0.0649 | Test Loss: 0.1416 | 损失比: 0.46:1 +Epoch 100 | Train Loss: 0.0643 | Test Loss: 0.1409 | 损失比: 0.46:1 +Epoch 110 | Train Loss: 0.0639 | Test Loss: 0.1409 | 损失比: 0.45:1 +Epoch 120 | Train Loss: 0.0637 | Test Loss: 0.1400 | 损失比: 0.45:1 +Epoch 130 | Train Loss: 0.0635 | Test Loss: 0.1394 | 损失比: 0.46:1 +Epoch 140 | Train Loss: 0.0633 | Test Loss: 0.1388 | 损失比: 0.46:1 +Epoch 150 | Train Loss: 0.0632 | Test Loss: 0.1386 | 损失比: 0.46:1 +Epoch 160 | Train Loss: 0.0630 | Test Loss: 0.1380 | 损失比: 0.46:1 +Epoch 170 | Train Loss: 0.0629 | Test Loss: 0.1374 | 损失比: 0.46:1 +Epoch 180 | Train Loss: 0.0629 | Test Loss: 0.1368 | 损失比: 0.46:1 +Epoch 190 | Train Loss: 0.0628 | Test Loss: 0.1364 | 损失比: 0.46:1 +Epoch 200 | Train Loss: 0.0627 | Test Loss: 0.1359 | 损失比: 0.46:1 +Epoch 210 | Train Loss: 0.0627 | Test Loss: 0.1355 | 损失比: 0.46:1 +Epoch 220 | Train Loss: 0.0626 | Test Loss: 0.1353 | 损失比: 0.46:1 +Epoch 230 | Train Loss: 0.0625 | Test Loss: 0.1346 | 损失比: 0.46:1 +Epoch 240 | Train Loss: 0.0625 | Test Loss: 0.1341 | 损失比: 0.47:1 +Epoch 250 | Train Loss: 0.0624 | Test Loss: 0.1338 | 损失比: 0.47:1 +Epoch 260 | Train Loss: 0.0624 | Test Loss: 0.1333 | 损失比: 0.47:1 +Epoch 270 | Train Loss: 0.0624 | Test Loss: 0.1331 | 损失比: 0.47:1 +Epoch 280 | Train Loss: 0.0623 | Test Loss: 0.1328 | 损失比: 0.47:1 +Epoch 290 | Train Loss: 0.0623 | Test Loss: 0.1324 | 损失比: 0.47:1 +Epoch 0 | Train Loss: 0.3257 | Test Loss: 0.2338 | 损失比: 1.39:1 +Epoch 10 | Train Loss: 0.1292 | Test Loss: 0.1531 | 损失比: 0.84:1 +Epoch 20 | Train Loss: 0.1048 | Test Loss: 0.1526 | 损失比: 0.69:1 +Epoch 30 | Train Loss: 0.0880 | Test Loss: 0.1500 | 损失比: 0.59:1 +Epoch 40 | Train Loss: 0.0775 | Test Loss: 0.1463 | 损失比: 0.53:1 +Epoch 50 | Train Loss: 0.0715 | Test Loss: 0.1437 | 损失比: 0.50:1 +Epoch 60 | Train Loss: 0.0683 | Test Loss: 0.1424 | 损失比: 0.48:1 +Epoch 70 | Train Loss: 0.0664 | Test Loss: 0.1409 | 损失比: 0.47:1 +Epoch 80 | Train Loss: 0.0653 | Test Loss: 0.1392 | 损失比: 0.47:1 +Epoch 90 | Train Loss: 0.0645 | Test Loss: 0.1381 | 损失比: 0.47:1 +Epoch 100 | Train Loss: 0.0640 | Test Loss: 0.1369 | 损失比: 0.47:1 +Epoch 110 | Train Loss: 0.0637 | Test Loss: 0.1361 | 损失比: 0.47:1 +Epoch 120 | Train Loss: 0.0634 | Test Loss: 0.1355 | 损失比: 0.47:1 +Epoch 130 | Train Loss: 0.0632 | Test Loss: 0.1352 | 损失比: 0.47:1 +Epoch 140 | Train Loss: 0.0630 | Test Loss: 0.1342 | 损失比: 0.47:1 +Epoch 150 | Train Loss: 0.0629 | Test Loss: 0.1338 | 损失比: 0.47:1 +Epoch 160 | Train Loss: 0.0628 | Test Loss: 0.1334 | 损失比: 0.47:1 +Epoch 170 | Train Loss: 0.0627 | Test Loss: 0.1330 | 损失比: 0.47:1 +Epoch 180 | Train Loss: 0.0626 | Test Loss: 0.1322 | 损失比: 0.47:1 +Epoch 190 | Train Loss: 0.0625 | Test Loss: 0.1319 | 损失比: 0.47:1 +Epoch 200 | Train Loss: 0.0624 | Test Loss: 0.1315 | 损失比: 0.47:1 +Epoch 210 | Train Loss: 0.0624 | Test Loss: 0.1310 | 损失比: 0.48:1 +Epoch 220 | Train Loss: 0.0623 | Test Loss: 0.1310 | 损失比: 0.48:1 +Epoch 230 | Train Loss: 0.0623 | Test Loss: 0.1303 | 损失比: 0.48:1 +Epoch 240 | Train Loss: 0.0622 | Test Loss: 0.1301 | 损失比: 0.48:1 +Epoch 250 | Train Loss: 0.0622 | Test Loss: 0.1300 | 损失比: 0.48:1 +Epoch 260 | Train Loss: 0.0621 | Test Loss: 0.1298 | 损失比: 0.48:1 +Epoch 270 | Train Loss: 0.0621 | Test Loss: 0.1301 | 损失比: 0.48:1 +Epoch 280 | Train Loss: 0.0621 | Test Loss: 0.1296 | 损失比: 0.48:1 +Epoch 290 | Train Loss: 0.0620 | Test Loss: 0.1297 | 损失比: 0.48:1 +Epoch 0 | Train Loss: 0.3614 | Test Loss: 0.2802 | Loss Factor: 1.29:1 +Epoch 10 | Train Loss: 0.1415 | Test Loss: 0.1612 | Loss Factor: 0.88:1 +Epoch 20 | Train Loss: 0.1115 | Test Loss: 0.1352 | Loss Factor: 0.82:1 +Epoch 30 | Train Loss: 0.0916 | Test Loss: 0.1180 | Loss Factor: 0.78:1 +Epoch 40 | Train Loss: 0.0795 | Test Loss: 0.1090 | Loss Factor: 0.73:1 +Epoch 50 | Train Loss: 0.0722 | Test Loss: 0.1074 | Loss Factor: 0.67:1 +Epoch 60 | Train Loss: 0.0687 | Test Loss: 0.1098 | Loss Factor: 0.63:1 +Epoch 70 | Train Loss: 0.0667 | Test Loss: 0.1129 | Loss Factor: 0.59:1 +Epoch 80 | Train Loss: 0.0655 | Test Loss: 0.1164 | Loss Factor: 0.56:1 +Epoch 90 | Train Loss: 0.0646 | Test Loss: 0.1188 | Loss Factor: 0.54:1 +Epoch 100 | Train Loss: 0.0641 | Test Loss: 0.1212 | Loss Factor: 0.53:1 +Epoch 110 | Train Loss: 0.0637 | Test Loss: 0.1227 | Loss Factor: 0.52:1 +Epoch 120 | Train Loss: 0.0635 | Test Loss: 0.1237 | Loss Factor: 0.51:1 +Epoch 130 | Train Loss: 0.0633 | Test Loss: 0.1245 | Loss Factor: 0.51:1 +Epoch 140 | Train Loss: 0.0631 | Test Loss: 0.1249 | Loss Factor: 0.51:1 +Epoch 150 | Train Loss: 0.0630 | Test Loss: 0.1255 | Loss Factor: 0.50:1 +Epoch 160 | Train Loss: 0.0629 | Test Loss: 0.1254 | Loss Factor: 0.50:1 +Epoch 170 | Train Loss: 0.0628 | Test Loss: 0.1259 | Loss Factor: 0.50:1 +Epoch 180 | Train Loss: 0.0627 | Test Loss: 0.1258 | Loss Factor: 0.50:1 +Epoch 190 | Train Loss: 0.0627 | Test Loss: 0.1260 | Loss Factor: 0.50:1 +Epoch 200 | Train Loss: 0.0626 | Test Loss: 0.1263 | Loss Factor: 0.50:1 +Epoch 210 | Train Loss: 0.0625 | Test Loss: 0.1262 | Loss Factor: 0.50:1 +Epoch 220 | Train Loss: 0.0625 | Test Loss: 0.1262 | Loss Factor: 0.50:1 +Epoch 230 | Train Loss: 0.0624 | Test Loss: 0.1268 | Loss Factor: 0.49:1 +Epoch 240 | Train Loss: 0.0624 | Test Loss: 0.1267 | Loss Factor: 0.49:1 +Epoch 250 | Train Loss: 0.0623 | Test Loss: 0.1268 | Loss Factor: 0.49:1 +Epoch 260 | Train Loss: 0.0623 | Test Loss: 0.1268 | Loss Factor: 0.49:1 +Epoch 270 | Train Loss: 0.0623 | Test Loss: 0.1269 | Loss Factor: 0.49:1 +Epoch 280 | Train Loss: 0.0622 | Test Loss: 0.1271 | Loss Factor: 0.49:1 +Epoch 290 | Train Loss: 0.0622 | Test Loss: 0.1271 | Loss Factor: 0.49:1