Files
ModelTrainingPython/TVS_DL/LoadData.py

33 lines
1.3 KiB
Python
Raw Permalink Normal View History

import pandas as pd
import torch
import numpy as np
from sklearn.preprocessing import StandardScaler, MinMaxScaler
# 数据预处理
def process_data(file_path):
# 读取Excel文件跳过首行使用科学计数法解析
df = pd.read_excel(file_path, header=None,sheet_name="sample1")
# 提取输入输出数据
inputs = df.iloc[:, 1:9].values.astype(np.float32) # 第2-9列
outputs = df.iloc[:, 10:19].values.astype(np.float32) # 第11-19列
# 数据标准化
input_scaler = StandardScaler()
output_scaler = StandardScaler()
inputs = input_scaler.fit_transform(inputs)
outputs = output_scaler.fit_transform(outputs)
#
# input_scaler = MinMaxScaler(feature_range=(-1, 1))
# output_scaler = MinMaxScaler(feature_range=(-1, 1))
# inputs = input_scaler.fit_transform(inputs)
# outputs = output_scaler.fit_transform(outputs)
return inputs, outputs, input_scaler, output_scaler
# 创建序列数据集 look_back依据时间序列 pred_step推测时间序列
def create_sequences(inputs, outputs, look_back=8, pred_step=1):
X, y = [], []
for i in range(len(inputs) - look_back - pred_step):
X.append(inputs[i:i + look_back])
y.append(outputs[(i+look_back):(i+look_back+pred_step)])
return torch.FloatTensor(np.array(X)), torch.FloatTensor(np.array(y))