Files
ModelTrainingPython/FC_ML_NN/NN_Basic.py

42 lines
958 B
Python
Raw Permalink Normal View History

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# 数据生成
x = np.linspace(-3, 3, 100).reshape(-1, 1)
y = 2 * x + 1 + np.random.normal(0, 0.5, x.shape)
x_tensor = torch.FloatTensor(x)
y_tensor = torch.FloatTensor(y)
# 模型定义
class LinearModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(1, 1)
def forward(self, x):
return self.linear(x)
# 训练配置
model = LinearModel()
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练循环
for epoch in range(1000):
pred = model(x_tensor)
loss = criterion(pred, y_tensor)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 结果输出
w = model.linear.weight.item()
b = model.linear.bias.item()
print(f'Final equation: y = {w:.2f}x + {b:.2f}')
# 可视化
plt.scatter(x, y)
plt.plot(x, w*x + b, 'r-')
plt.show()